Cholesterol affects flow-stimulated cyclooxygenase-2 expression and prostanoid secretion in the cortical collecting duct.
نویسندگان
چکیده
Essential hypertension (eHTN) is associated with hypercholesterolemia, but how cholesterol contributes to eHTN is unknown. Recent evidence demonstrates that short-term dietary cholesterol ingestion induces epithelial Na channel (ENaC)-dependent Na absorption with a subsequent rise in blood pressure (BP), implicating cholesterol in salt-sensitive HTN. Prostaglandin E2 (PGE2), an autocrine/paracrine molecule, is induced by flow in endothelia to vasodilate the vasculature and inhibit ENaC-dependent Na absorption in the renal collecting duct (CD), which reduce BP. We hypothesize that cholesterol suppresses flow-mediated cyclooxygenase-2 (COX-2) expression and PGE2 release in the CD, which, in turn, affects Na absorption. Cortical CDs (CCDs) were microperfused at 0, 1, and 5 nl·min(-1)·mm(-1), and PGE2 release was measured. Secreted PGE2 was similar between no- and low-flow (151 ± 28 vs. 121 ± 48 pg·ml(-1)·mm(-1)) CCDs, but PGE2 was greatest from high-flow (578 ± 146 pg·ml(-1)·mm(-1); P < 0.05) CCDs. Next, mice were fed either a 0 or 1% cholesterol diet, injected with saline to generate high urine flow rates, and CCDs were microdissected for PGE2 secretion. CCDs isolated from cholesterol-fed mice secreted less PGE2 and had a lower PGE2-generating capacity than CCDs isolated from control mice, implying cholesterol repressed flow-induced PGE2 synthesis. Next, cholesterol extraction in a CD cell line induced COX-2 expression and PGE2 release while cholesterol incorporation, conversely, suppressed their expression. Moreover, fluid shear stress (FSS) and cholesterol extraction induced COX-2 protein abundance via p38-dependent activation. Thus cellular cholesterol composition affects biomechanical signaling, which, in turn, affects FSS-mediated COX-2 expression and PGE2 release via a p38-dependent mechanism.
منابع مشابه
Ontogeny of flow-stimulated potassium secretion in rabbit cortical collecting duct: functional and molecular aspects.
High urinary flow rates stimulate K secretion in the fully differentiated but not neonatal or weanling rabbit cortical collecting duct (CCD). Both small-conductance secretory K and high-conductance Ca2+/stretch-activated maxi-K channels have been identified in the apical membrane of the mature CCD by patch-clamp analysis. We reported that flow-stimulated net K secretion in the adult rabbit CCD ...
متن کاملEpoxyeicosatrienoic acid activates BK channels in the cortical collecting duct.
The cortical collecting duct (CCD), which is involved in renal potassium (K) excretion, expresses cytochrome P450 (CYP)-epoxygenase. Here, we examined the effect of high dietary K on renal expression of CYP2C23 and CYP2J2 in the rat, as well as the role of CYP-epoxygenase-dependent metabolism of arachidonic acid in the regulation of Ca(2+)-activated big-conductance K (BK) channels. By Western b...
متن کاملCa dependence of flow-stimulated K secretion in the mammalian cortical collecting duct
Liu W, Morimoto T, Woda C, Kleyman TR, Satlin LM. Ca dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. Am J Physiol Renal Physiol 293: F227–F235, 2007. First published March 27, 2007; doi:10.1152/ajprenal.00057.2007.—Apical low-conductance SK and high-conductance Ca -activated BK channels are present in distal nephron, including the cortical collecting duct (C...
متن کاملProstaglandin E receptors and the kidney.
Prostaglandin E(2) is a major renal cyclooxygenase metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal hemodynamics and salt and water excretion. The intrarenal distribution and function of EP receptors have been partially characterized, and each receptor has a dist...
متن کاملFlow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct.
Fluid shear stress (FSS) is a critical regulator of cation transport in the collecting duct (CD). High-dietary sodium (Na) consumption increases urine flow, Na excretion, and prostaglandin E(2) (PGE(2)) excretion. We hypothesize that increases in FSS elicited by increasing tubular flow rate induce the release of PGE(2) from renal epithelial cells into the extracellular compartment and regulate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 308 11 شماره
صفحات -
تاریخ انتشار 2015